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Whereas many widely accepted methods and techniques exist for showing stability of 

traditional controllers, at this time standard methods have not been adopted for Fuzzy Logic 

Controllers (FLCs). Due to the highly non-linear nature of such systems it is quite difficult to 

use conventional techniques to prove controller stability. Because safety-critical systems (such 

as flight control systems) must be tested and verified to work as expected for all possible 

circumstances, the fact that FLCs cannot be proven to achieve such requirements poses 

limitations on the implementation for such systems. Therefore, alternative methods for 

verification of an FLC’s behavior, including stability, need to be explored. In this study, a 

novel approach using formal verification methods to ensure the stability of an FLC is 

proposed. The research challenges include specification of requirements for a complex system, 

conversion of a traditional FLC to a piecewise polynomial representation, and using a formal 

verification tool in a non-linear solution space. Using the proposed architecture, the Fuzzy 

Logic Controller was found to always generate negative feedback, but was inconclusive for 

Lyapunov stability. 

Nomenclature 

θ = pendulum angle 

𝜃̇ = pendulum angle rate 

𝑒𝜃  = pendulum angle error 

𝑒̇𝜃  = pendulum angle error rate 

T = controller output 

g = gravitational acceleration 

L = pendulum length 

m = pendulum mass 

I. Introduction 

n recent years, new complex control methods have developed more quickly than the methods used to ensure their 

adherence to safety and performance requirements. Whereas many analytical methods have been used to prove 

that a classical controller can achieve stability, or other performance measures, at this time there are no standard 
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analytical methods for analyzing complex non-linear controllers, such as ones using Fuzzy Logic. Whereas several 

methods for building evidence towards controller verification using simulation or linearization exist, these techniques 

cannot guarantee the controller will act as desired for all possible conditions. In this study the authors aim to develop 

a method with a low level of abstraction for verifying, or definitively refuting, a Fuzzy Logic Controller (FLC) for 

two cases of stability analysis: negative feedback and Lyapunov stability. 

Although copious amounts of literature regarding Lyapunov stability for linear and non-linear controllers exists, 

the primary focus of this study is to address the possible solutions for proving stability in hybrid systems that are 

analogous to FLCs. In a paper by Rattan et al1, an indirect method was used to prove Lyapunov stability for an FLC. 

In general, for a linear system to be stable in the sense of Lyapunov, there must be a matrix, 𝑃, that meets a set of 

prescribed conditions2,3. Because this matrix cannot be used to describe a non-linear system, if a linear controller could 

be created that produced the same results as the non-linear one, this linearized version could be verified. This is based 

on the matrix form of the Lyapunov equation.  

To find the matrix that allows the system to satisfy the Lyapunov conditions, first, state variable information for 

all modes of the FLC was gathered through simulation. Next, a formalized sentence describing the desired behavior 

of the system was constructed. By inserting the simulation data and a negated version of the formalized sentence into 

a model checker a valid matrix could be found. By negating the sentence, if a condition exists that violates it, the 

model checker will provide a counterexample. This counterexample gives the values for the matrix 𝑃 that shows the 

system is stable in the sense of Lyapunov. This is based on the assumption that each mode of the system is linear 

however. 

In another paper, Feng4 describes a method for analyzing Takagi-Sugeno type FLCs using piecewise Lyapunov 

functions. Piecewise Lyapunov functions have parameters that take on different values for the different modes of the 

system based on the Fuzzy set domains. Although they are able to show that a developed FLC is stable using piecewise 

Lyapunov functions, Feng concludes the approach does not admit a single Lyapunov function. Additionally, the 

method does not require that the piecewise Lyapunov functions be continuous across the boundaries of modes. This 

then requires other analysis to ensure stability due to the instantaneous change in energy.  

Piecewise Lyapunov functions were also discussed in work by Seyfried5. In this thesis, a similar method to the 

one detailed by Feng is implemented and it was discovered that the discontinuities may not drive the system unstable, 

so long as the maximum value at the boundary of a succeeding mode is not greater than the maximum achieved in the 

previous mode. However, this was still done using simulation traces and therefore was not analyzing maxima along 

the entire boundary. Yet another method utilizes Piecewise Lyapunov functions that are blended using Fuzzy Logic6,7. 

This prevents the discontinuities at the boundaries of modes which could be a source of instability, but may also be 

difficult to develop in Mamdani type FLC systems with a larger number of modes. 

As opposed to the indirect method proposed by Rattan et al1, this study used a direct method. By using this 

approach, the non-linear FLC could be directly tested for stability. To achieve this, a single non-linear candidate 

function was prescribed and then tested. Then, a Satisfiability Modulo Theories (SMT) solver, Z38, was used to 

evaluate the candidate function, along with the controlled system, to check if the system met the constraints for 

stability. The benefit of using this type of solver is that it provides formal proofs that the constraints will be met over 

the entire input space. In cases where the SMT solver cannot prove that the system is stable, it can provide specific 

counterexamples that identify the problem modes. 

In the next section, a description of the dynamic system used in this study is shown, as well as a brief introduction 

to positive feedback and Lyapunov stability. The proposed solution is introduced in Section III. The methods for 

testing the proposed solution are highlighted in Section IV. The results of the study and a discussion of significant 

findings are presented in Section V. Lastly, conclusions are drawn and areas for future work are described in Section 

VI. 

II. Problem Description 

The problem that this method is attempting to address is to analyze an FLC for the following dynamic system. 

The analysis will involve proving that the FLC adheres to specifications that it should always give positive feedback 

and be stable in the sense of Lyapunov. 
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A.  Dynamic System Description 

The dynamic system that was analyzed in this study was a single degree-of-

freedom inverted pendulum. In this system, an input torque was supplied by a 

controller to keep the pendulum inverted throughout time. In this study, two 

controller types were developed and tested: a classical Proportional-Derivative (PD) 

controller and a non-linear Fuzzy Logic Controller (FLC). The configuration of the 

dynamic system setup can be seen in Figure 1. 

Whereas this system seems to be fairly simple in nature, the non-linear FLC 

controller imposed interesting characteristics not typically seen by a classical 

controller. Throughout simulation, the performance of the FLC was superior to the 

classical linear controller with respect to both rise and settling times. In each of these cases, experiments were 

conducted to show that the controller was able to meet the system requirements for positive feedback and Lyapunov 

stability. 

B.  Positive Feedback 

The first area of stability analysis conducted in this study was checking for positive feedback. In a dynamic system, 

a controller is created to provide negative feedback to the system. In essence, this means that the controller is not 

increasing the state error or error rate at any time. If the controller produces positive feedback, this is undesirable and 

will force the system to diverge from the desired set point. If positive feedback occurs, the system is not necessarily 

unstable, as it could push the system into a limit cycle; however, this is not a desired output of the system since it 

worsens performance. 

C.  Lyapunov Stability 

The second area of stability analysis performed was testing for Lyapunov stability. This testing criteria is achieved 

by selecting a candidate function that is positive semi-definite and often includes a notion of energy in the system. To 

check stability in the sense of Lyapunov, the time derivative of the candidate function is found. If this function can be 

proven to be negative-definite over all conditions of interest, the system will be asymptotically stable2,3. Therefore, 

over time the controller will force the system to converge to zero error and error rate. Similarly, if the function is 

negative semi-definite, the system is stable in the sense of Lyapunov and will remain in a set region around the desired 

position. Lastly, if the function is found to be positive for any conditions of interest, the stability of the system cannot 

be concluded using the candidate function chosen. For a given system, there is no guarantee that such a function that 

satisfies these conditions can be found, or even exists. This does not necessarily imply that the controller is unstable; 

this simply means that stability in the sense of Lyapunov cannot be proven. 

D.  SMT Solvers 

The properties of the controllers were tested for positive feedback and Lyapunov stability utilizing a Satisfiability 

Modulo Theories (SMT) solver. SMT solvers are tools that extend the ability to solve satisfiability problems to higher 

order logics. Satisfiability problems are problems that involve a search for variable assignments such that a formula 

of interest evaluates to true. When the variables have binary truth assignments, this search is known as the Boolean 

Satisfiability Problem. SMT solvers extend this to include First Order Logic (FOL) sentences. FOL extends 

propositional logic to include quantification of variables and predicates, and can include theories such as real and 

integer arithmetic, bitvectors, and arrays.  Z38 is one such solver developed by Microsoft and was used throughout the 

scope of this work. It has the ability to solve SMT queries involving non-linear real arithmetic and was the top 

performing solver in competition-wide scoring for the 2016 SMT competition11. 

III. Proposed Solution 

Prior to developing the controllers for the inverted pendulum system, a model for the single degree-of-freedom 

inverted pendulum was developed using a Lagrangian approach. In this approach, energy methods are used to develop 

the equation of motion. This equation of motion was found to be: 

 1

3
𝑚𝐿2θ̈ − 𝑚𝑔

𝐿

2
sin θ = 𝑇 (1) 

where 𝑔 is the acceleration due to gravity, 𝑚 is the mass of the pendulum, 𝐿 is the length of the pendulum, and 𝑇 is 

the applied torque (i.e. the output from the controller). The physical parameters had values of 9.81
𝑚

𝑠2, 1 𝑘𝑔, and 1 𝑚, 

 
Figure 1. Single degree-of-

freedom inverted pendulum 
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respectively. With this model, two controllers were developed to keep the pendulum inverted: a Proportional-

Derivative (PD) Controller and a Fuzzy Logic Controller (FLC). 

A. PD Controller Development 

The first controller that was created was a linear PD controller that has the form:  

 𝑇 = 𝐾𝑝𝑒𝜃 + 𝐾𝑑𝑒̇𝜃 (2) 

where 𝐾𝑝 and 𝐾𝑑 are real-valued gains specified by the designer, 𝑒𝜃 is the error, 𝑒̇𝜃 is the error rate, and 𝑇 is the 

controller output. The set point used was the equilibrium point θ = 0 which gives the relationships 𝑒𝜃 = −𝜃 and 𝑒̇𝜃 =

−𝜃̇. Eq. (1) was then linearized about θ = 0. The gains were selected using traditional tuning techniques to be: 𝐾𝑝= 

113, 𝐾𝑑= 7.6. 

B. Fuzzy Controller Development 

Next, a Mamdani-type Fuzzy Logic Controller, based on Fuzzy 

Set Theory introduced by Lofti Zadeh in the 1960's9, was developed. 

A Fuzzy controller uses input classification and rules associating 

different Fuzzy sets to produce complex and highly non-linear input-

output relationships. Using a Fuzzy controller has many benefits 

including the ability to be developed by a designer that has some 

expert knowledge about how the system should desirably act. Fuzzy 

controllers are also universal approximators and can approximate any 

given function to an arbitrary degree of accuracy. This is useful when 

there is some unknown optimal control surface. 

Due in part to Fuzzy controllers’ ability to approximate some 

(potentially non-linear) optimal control surface, the input-output 

relationship can be 

complicated, and their non-

linear nature precludes 

analysis using traditional 

design methods. Due to 

this, the authors aim to 

develop an approach for 

analyzing these input-

output relationships. This is 

necessary for these types of 

systems to ensure they 

perform as expected prior 

to being implemented into 

safety-critical systems. 

In each Fuzzy system, 

the user must define a rule 

base to govern the action of 

the controller for a set of 

inputs. The Fuzzy system 

used in this study was 

trained using a combination 

of expert knowledge and 

Genetic Algorithms, both 

of which are beyond the 

scope of this paper. The 

rule base governing the 

FLC can be seen in Figure 2. In this figure, the linguistic terms of each entry and their respective abbreviation are as 

follows: negative big [NB], negative medium [NM], negative small [NS], zero [ZE], positive small [PS], positive 

medium [PM], and positive big [PB]. The inputs are the pendulum angle error, 𝑒𝜃 [e], and the angle error rate, 𝑒̇𝜃 

[de/dt]. The membership functions for the input sets are shown in Figures 3 and 4.  

 
Figure 2. FLC rule base 

 

de/dt NB NM NS ZE PS PM PB

NB NB NB NB NM NM NS ZE

NM NB NB NM NM NS ZE PS

NS NB NM NM NS ZE PS PM

ZE NM NM NS ZE PS PM PM

PS NM NS ZE PS PM PM PB

PM NS ZE PS PM PM PB PB

PB ZE PS PM PM PB PB PB

e

 
Figure 3. Angle error input membership functions after training 

 

 
Figure 4. Angle error rate input membership functions after training 
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C. Conversion to Piecewise Polynomial Representation 

In order to simplify the input-output relationship, the FLC was constrained and converted to a piecewise 

polynomial system using previously developed methods10. The constraints for the FLC are as follows: 

 Triangular membership functions: This constraint limits the membership function shape to be triangular. The 

result is a piecewise linear membership function of the input value for a particular membership function. 

 Fuzzy partitioning: The membership functions are partitioned such that the end points for the triangle defining a 

membership function coincide with the center points of neighboring membership functions. A visualization of 

this is shown in Figures 3 and 4 where the dashed lines represent the locations of the membership function center 

points. The center points are defined as the input value that gives the maximum membership value of one for that 

particular function. 

 Normalization:  The input and output sets were defined on a normalized range such that any input value is within 

positive or negative unity. Gains are used to reduce the inputs to this range and a gain is applied to the output as 

well. Also, if a value is outside of the universe of discourse, it is reduced to the boundary value. 

 Product method: For rule associations, the product method was used to scale the contributions of each active 

membership function based on its membership value for a given input. An active membership function is one that 

has a non-zero membership value for a given input value. For example, if a rule in the FLC is described by If 𝑥1 

is 𝐴𝑖 and 𝑥2 is 𝐵𝑗  then output is 𝑈𝑖,𝑗, the product method would combine these to give 𝑝𝑟𝑜𝑑 = 𝜇𝑖𝜇𝑗𝑈𝑖,𝑗. Where 

𝜇𝑖 and 𝜇𝑗 are the membership values in the 𝐴𝑖 and 𝐵𝑗  membership functions and 𝑈𝑖,𝑗 is the center point of the 

output membership function associated with 𝐴𝑖 and 𝐵𝑗 . 

 Weighted average defuzzification: In FLCs, there are usually multiple membership functions that are active for 

each input. This results in multiple rules that are active as well, and is referred to as the aggregate. To resolve a 

crisp output from this aggregate, a process called “defuzzification” is used. For example, a common method for 

defuzzification is the centroid method. This method takes the centroid of the aggregate to give a single, crisp 

output that is most representative of the components of the aggregate. The method used in this work for 

defuzzification was weighted average. This method is similar to centroid, although it only needs the membership 

values of the active membership functions along with the center points of the corresponding output membership 

functions, instead of the entire geometric representation of the aggregate. This reduces computational complexity 

and allows for easier translation to an explicit representation while still giving similar performance to the centroid 

method. Eq. (3) shows the output of a two-input, one-output FLC using this defuzzification method in 

combination with the product method for rule associations. 

 
𝑦 =

∑ ∑ 𝜇𝑖𝜇𝑗𝑈𝑖,𝑗
𝑛2
𝑗=1

𝑛1
𝑖=1

∑ ∑ 𝜇𝑖𝜇𝑗
𝑛2
𝑗=1

𝑛1
𝑖=1

 (3) 

Here, 𝑦 is the output of the FLC, and 𝑛1 and 𝑛2 are the number of membership functions for the first and second 

inputs, respectively. Note that the denominator in Eq. (3) will always be unity and there will only be two active 

membership functions per input due to the chosen partitioning constraint.  

Using these constraints, the FLC could be converted into a piecewise polynomial form. Through this conversion, 

the input-output relationships are simplified when compared to typical FLC implementations. The input-output 

relationship of the FLC has the following form: 

 𝑇 = 𝐾1𝑒𝜃 + 𝐾2𝑒̇𝜃 + 𝐾12𝑒𝜃𝑒̇𝜃 + 𝐾𝑐  (4) 

where the coefficients 𝐾1, 𝐾2, 𝐾12, and 𝐾𝑐 are constant for a particular mode. The modes are defined as the regions 

between the center points of the input membership functions. The transitions occur such that the functions governing 

each mode are continuous and are inclusive on the lower boundary of the mode. The exception to this is the “upper” 

mode (i.e. when either input is in its “PM” and “PB” membership functions). In this mode, the domain is inclusive on 

both boundaries. As an example of the structure of the piecewise polynomial representation of the FLC, consider a 

similar FLC that only has three membership functions instead of the seven shown in Figures 3 and 4. These 

membership functions, for both inputs, would have center points at {-1,0,1}, and the system would have four total 

modes. When either input crosses zero, the system would transition to a different mode that is governed by a 

continuous function in the form of Eq. (4). A visualization of this 4-mode system is shown in Figure 5. The structure 

is the same for the FLCs in this work, with the difference being that since seven membership functions are used for 

each input, the total number of modes is 36. 
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D. Formalizing Constraints into 

First Order Logic 

After the controllers were 

developed, the system equations and 

the constraints for each stability 

criteria for both controllers were 

formalized into FOL sentences. Using 

these FOL sentences, the equations 

need to be proven to hold over the 

entire bounded domain. This can be 

done by negating the entire statement 

and then proving that the statement 

and its constraints are unsatisfiable. As 

previously mentioned in the 

description of positive feedback 

requirements, the controller shall 

always drive the error and error rate 

towards zero. This expression can be formalized using the following FOL sentence: 

 
∀𝑒𝜃∀𝑒̇𝜃 ( ((𝑠𝑔𝑛(𝑒𝜃)˄ 𝑠𝑔𝑛(𝑒̇𝜃)) → 𝑠𝑔𝑛(𝑇)) ˄ ((¬𝑠𝑔𝑛(𝑒𝜃)˄¬𝑠𝑔𝑛(𝑒̇𝜃)) → ¬𝑠𝑔𝑛(𝑇))) (5) 

where 𝑠𝑔𝑛 refers to a predicate that resolves signed real variables to Boolean values. In this case, 𝑠𝑔𝑛 is inclusive of 

zero on the positive side. This expression can be verified by examining the controller input-output equation(s). This 

approach was tested for both the PD and Fuzzy controllers. 

For the case of checking that the system is stable in the sense of Lyapunov, a candidate function was created to 

meet the set criteria. Our candidate function is as follows: 

 
𝑉(𝑥̅) =

1

2
𝑥2

2 + 𝑎(1 − cos 𝑥1) (6) 

where 𝑥1 = 𝜃 and 𝑥2 = 𝜃̇. The coefficient 𝑎 had values of 334 for the PD case and 243 for the FLC case. This function 

meets the constraints for a candidate Lyapunov function that 𝑉(𝑥̅ = 0) = 0 and 𝑉(𝑥̅ ≠ 0) > 0 and was created with 

intuition and minor testing using simulation runs. Next, 𝑉̇(𝑥̅) can be found using the following expressions: 

 𝑥̇1 = 𝑥2 (7) 

 𝑥̇2 = 3(𝑇 + 4.905 sin 𝑥1) (8) 

 
𝑉̇(𝑥̅) = [

𝜕𝑉

𝜕𝑥1

𝜕𝑉

𝜕𝑥2

] [
𝑥1̇

𝑥2̇
] (9) 

By taking the partial derivatives of Eq. (6) and substituting into Eq. (9), we get the following two equations for the 

PD and FLC cases, respectively.  

 𝑉̇(𝑥̅) = 3𝑥2(𝑇 + 116.238 sin 𝑥1) (10) 

 𝑉̇(𝑥̅) = 3𝑥2(𝑇 + 85.905 sin 𝑥1) (11) 

We know that the candidate Lyapunov function, 𝑉̇(𝑥̅) must be negative semi-definite. Thus, the constraint equations 

for testing stability in the sense of Lyapunov becomes: 

 ∀𝑥1∀𝑥2(𝑉̇(𝑥̅) ≤ 0) (12) 

Lastly, after the constraint equations had been written in FOL, the representations of each controlled system and 

constraints were implemented into an SMT Solver to verify that the system always meets the specification criteria. 

 
Figure 5. Piecewise polynomial representation of 4-mode FLC with 

continuous modes and discrete transitions 
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IV. Test Methods 

A. Positive Feedback 

To verify that the linear PD controller produces negative feedback for all possible inputs, a Z3 script was developed 

to verify this constraint satisfaction problem. Therefore, the inputs of error and error rate first had to be declared within 

the Z3 architecture. This was done by utilizing the knowledge that 𝑒𝜃 =  −𝜃 and 𝑒𝜃̇ = −𝜃̇, due to the set point being 

𝜃 = 0. The assertions that the output torque from the controller was always in the desired direction were then 

described. That is, if both 𝑒𝜃 and 𝑒𝜃̇ were positive, the torque must always be positive. On the other hand, if both 𝑒𝜃 

and 𝑒𝜃̇ were negative, the torque must necessarily be negative. In the cases where 𝑒𝜃 is positive and 𝑒𝜃̇ is negative and 

vice versa, the desired controller output is magnitude dependent. Thus, the positive feedback specification is not 

applicable. By setting hard constraints on the ranges of 𝑒𝜃 and 𝑒𝜃̇ for each case (i.e. strictly negative or strictly 

positive), the constraints on the controller output could be negated, resulting in the following expression: 

 ∃𝑒𝜃∃𝑒̇𝜃 ¬ ( ((𝑠𝑔𝑛(𝑒𝜃)˄ 𝑠𝑔𝑛(𝑒̇𝜃)) → 𝑠𝑔𝑛(𝑇)) ˄ ((¬𝑠𝑔𝑛(𝑒𝜃)˄¬𝑠𝑔𝑛(𝑒̇𝜃)) → ¬𝑠𝑔𝑛(𝑇))) (13) 

Thus, if the SMT solver was used to check if the above system is satisfiable, and found it to be true, positive 

feedback can occur in the system. However, if it is found to be unsatisfiable, the system is guaranteed to have negative 

feedback for all inputs within the analyzed domain. This means that there are no possible values that violate the 

original requirement stated in Eq. (5). Therefore, it is proven to hold over the entire domain of the inputs. 

Similarly, the possibility of positive feedback occurring in the Fuzzy controller case was analyzed using the same 

approach. The only difference here is that whereas the PD case has only one mode, the Fuzzy controller has (𝑛1 −
1)(𝑛2 − 1) possible modes that need to be analyzed, where 𝑛1 and 𝑛2 are the number of membership functions for 

each respective input. 

B. Lyapunov Stability 

Finally, both controllers were tested for Lyapunov stability. Using the equation previously defined for 𝑉̇(𝑥̅) and 

constraining the inputs to the controller, a constraint satisfaction problem can be developed to ensure that 𝑉̇(𝑥̅) is 

negative semi-definite. The constraints on the inputs are simply normalized bounds based on the gains found during 

training. To check the stability specification, it is again negated which gives the following expression: 

 ∃𝑥1∃𝑥2 ¬(𝑉̇(𝑥̅) ≤ 0)  (14) 

By proving that the above expression is unsatisfiable, we can guarantee that the system is stable. For this case, the 

controller output, 𝑇, was simply changed based on the type and mode of the controller. The PD controller has only 

one mode. However, the Fuzzy controller has 36 modes. These modes were checked along with the corresponding 

input bounds (defined by the membership function center points) for unsatisfiability. It should be noted that Z3 cannot 

handle transcendental functions and the sine functions in Eqs. (10) and (11) were approximated using the first three 

terms of a Maclaurin series expansion – sin(𝑥) ≈ 𝑥 −
𝑥3

6
+

𝑥5

120
. Although this approximation is not exact, the error at 

the bounds of 𝑥1 is acceptable as the maximum magnitude of 𝑥1 is approximately 0.1255 𝑟𝑎𝑑. The maximum error 

magnitude due to this approximation is 9.72𝑒−11 𝑟𝑎𝑑 and occurs at the outer boundaries of the input space. 

V. Results 

A. Positive Feedback 

Once each of the above cases was developed, they were analyzed using Z3. When checking for positive feedback 

in the linear controller, Z3 found that the model was unsatisfiable in all cases. Therefore, we have proven for the 

domain ranges tested we can ensure that the system will only produce negative feedback. When checking for positive 

feedback in the Fuzzy controller, we again found that the system was unsatisfiable in all modes analyzed. Thus, we 

again showed that the FLC would always produce negative feedback to the system. 

As a counterexample for the FLC positive feedback check, a bad rule was intentionally placed in the rule base, as 

seen in Figure 6. This rule now says that if the angle error and error rate are both large in the negative direction, the 

controller should output a positive torque. Due to the sign conventions of angle error, error rate, and torque, this means 

that the pendulum is far away from the set point, is moving further away, and the torque input is such that it is pushing 

it even further still.  
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By creating this bad rule, Z3 was able to identify the mode that 

violated this specification. This was used to ensure that the problem 

was formulated correctly in Z3 and to check that Z3 could identify this 

potential hazard in the proposed Fuzzy controller. Although positive 

feedback is not in itself conclusive for guaranteeing safety or stability 

of a controller, it is easily verified using an SMT solver. This also 

represents a powerful tool for design. Incorporating specifications 

such as these during a training or optimization process will lead to 

more confidence in the controller performance. 

B. Lyapunov Stability 

Prior to evaluating both the PD and Fuzzy controllers using the Z3 

formulation, a MATLAB simulation was developed to test a range of 

inputs for the system. The domain used in testing was the universe of 

discourse for each input. More formally, 𝐷 = {ℝ| − 0.1255 ≤ 𝑥1 ≤ 0.1255, −1.628 ≤ 𝑥2 ≤ 1.628}. In these cases, 

we wanted to ensure that the derivative of our candidate Lyapunov function was negative semi-definite for all points 

tested. Upon evaluation over a range of values for 𝑥1 and 𝑥2, it was concluded that both the PD and Fuzzy controllers 

satisfied this condition. A figure showing the results of the simulated candidate function for the FLC can be seen in 

Figure 7.  

Next, the PD controller was 

tested for stability in the sense 

of the Lyapunov using Z3. 

When the program ran the 

same range of inputs that were 

analyzed in the MATLAB 

simulation, Z3 found 

conditions that the simulation 

points missed. Whereas the 

simulation analyzed a large 

number of discrete input 

values, it did not analyze the 

entire continuous range of 

inputs. Therefore, the 

simulation missed points that 

make 𝑉̇(𝑥̅) positive (i.e. violate 

the system requirement for 

stability). 

Similarly, the Fuzzy implementation had the same outcome. In the MATLAB simulation, 𝑉̇(𝑥̅) was negative semi-

definite over the range of inputs. In addition, dynamic simulations were run over a range of initial conditions for 𝜃 

and 𝜃̇. These initial conditions were equally spaced  over the domain 𝐷. The time histories of both 𝜃 and 𝜃̇ for each 

of these runs for the FLC controlled system converge to zero, as shown in Figure 8. Additionally, a phase portrait is 

shown in Figure 9 for every tenth run. These results seem to indicate that the controller is stable within this region, 

but this method cannot be used to prove its stability within a finite amount of time. 

 Although the simulation results are promising, when realized and tested using FOL in Z3, eight modes were found 

to be satisfiable. Meaning values for 𝜃 and 𝜃̇ were found that drove 𝑉̇(𝑥̅) positive and violated the specification. It is 

important to note that this does not mean that the controlled system is unstable; it simply means that no conclusions 

can be drawn about the system stability using our selected candidate Lyapunov function. If a candidate function could 

be found that does satisfy these requirements, we could then conclude that the system is stable (i.e. asymptotically or 

in the sense of Lyapunov). However, the power to identify these conditions that would otherwise be missed by the 

simulation results provides value when making claims about a system’s adherence to its requirements. Because 

stability needs to be a safety property (a property that holds over the entire space), one can conclusively say that it 

holds, or identify cases where it does not. This is invaluable in the design phase of the controller development, as it 

can lead the designer to be able to correct those modes. 

 
Figure 6. FLC rule base with bad 

(highlighted) rule 

 

de/dt NB NM NS ZE PS PM PB

NB PB NB NB NM NM NS ZE

NM NB NB NM NM NS ZE PS

NS NB NM NM NS ZE PS PM

ZE NM NM NS ZE PS PM PM

PS NM NS ZE PS PM PM PB

PM NS ZE PS PM PM PB PB

PB ZE PS PM PM PB PB PB

e

 
Figure 7. 𝑽̇(𝒙) numerical evaluation for FLC 
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The modes that were identified as violating the specification are shown in the Fuzzy rule base in Figure 10. The 

different shades for the membership functions are due to the fact that each mode contains four membership functions. 

This is due to the partitioning constraint detailed in Section III.C. Therefore, the darker the shade, the more modes 

that contain that membership function have values violating the specification. In addition to the information about 

which mode violated the specification, the values for 𝜃 and 𝜃̇ that satisfied the negated specification are known.  

Although the Lyapunov candidate function was not able to say that the controller was definitively stable in these 

modes, it may very well be. After identifying these modes, several simulations were run within these modes to gather 

more evidence that the controller is in fact stable. The phase portrait of the system response within these modes is 

shown in Figure 11. The initial conditions for 𝜃 and 𝜃̇ were set to be 25 equally spaced values from one boundary of 

the domain 𝐷 to the other within each mode for a total of 5,000 runs. Each simulated case ran for the same specified 

time as the responses shown in Figure 8. This was to show the overall stability, as opposed to ending the trace once it 

reached the boundary of the mode.  

These simulation traces similarly do not prove that the system is stable, but the simulation results do contribute to 

the overall body of evidence. Combined with the SMT methods mentioned, these inspire high confidence in the 

controller’s ability to stabilize the system effectively. 

Although the chosen Lyapunov candidate function was not able to prove the Fuzzy controller was stable in all 

modes, being able to identify those inconclusive modes represents an important capability. The controller could be 

retrained using some sort of optimization algorithm and then reevaluated until the Lyapunov stability requirements 

are met. In addition, this training loop could be closed if the information about the violating modes could be utilized 

to guide the next optimization attempt. 

 
Figure 8. Time histories for 𝜽 (left) and 𝜽̇ (right) over range of initial values for FLC controlled system 

 

 
Figure 9. Phase portrait of Fuzzy controlled system 

(𝜽 vs 𝜽̇) for range of initial conditions 

 

 
Figure 10. Fuzzy controller rule base with 

highlighted modes that violate Lyapunov stability 

specification 
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VI. Conclusion 

Using the approaches described in this study, we have 

shown that utilizing an SMT solver is a valid method for 

analyzing several desirable (and undesirable) characteristics 

of both a linear and non-linear Fuzzy Logic controller. The 

SMT solver offers conclusive proofs for whether a 

requirement holds, given that it can be properly represented 

in formal logic. Both controllers were proved to not produce 

positive feedback by showing that conditions that do give 

positive feedback do not exist (i.e. they are unsatisfiable). 

Lastly, although simulation runs provided negative semi-

definite values for 𝑉̇(𝑥̅) and seemed to indicate stability 

from time histories and phase portraits, Z3 showed 

conditions exist where 𝑉̇(𝑥̅) is positive. Therefore, the Fuzzy 

controller cannot be proven stable using this candidate 

function. An important caveat is that this method can be very 

conservative, and the controller may very well be stable while not being able to satisfy the Lyapunov criteria for 

candidate functions that are selected. This represents the main difficulty with this method as selecting a candidate 

function is not trivial. Also, when determining performance and stability for dynamic systems, simulation runs do 

contribute towards the overall body of evidence that the system will perform as expected. The simulation runs that 

were performed indicate that it is likely that the controller is indeed stable within the boundaries evaluated. Overall, 

these techniques can aid with the design phase for FLCs of this type, since unstable modes can be identified and 

corrected using optimization protocols. 

There are several opportunities for extending this work. One of which is exploring different methods of candidate 

function selection. Although the results are inconclusive for proving Lyapunov stability given the prescribed candidate 

function, another method could be used to potentially find parameters for the candidate function that prove stability. 

In systems where certain unknown parameters affect the truth evaluation of a constraint satisfaction problem, it is 

sometimes possible to perform parameter synthesis to find satisfying assignments. Consider a candidate Lyapunov 

function of the following form: 

 
𝑉(𝑥̅) = 𝑐1(1 − cos 𝑥1) +

1

2
𝑐2𝑥2

2 (15) 

The coefficients 𝑐1 and 𝑐2 are unknown but could potentially be found by searching with SMT. This could be done by 

converting this into an exists-forall formula. These formulas have the form ∃𝑝. ∀𝑥. 𝑃(𝑝, 𝑥), meaning that there exists 

some values for 𝑝 that satisfy 𝑃 for all values of 𝑥. This can then be rewritten as ∀𝑥. 𝑃(𝑝, 𝑥) with constraints on 𝑝 in 

order to remove the existential quantifiers and search for satisfying values. The main issue with this approach is the 

computational expense of doing so. Others have done this for controllers with few modes, but it is difficult to find 

parameters that globally satisfy the Lyapunov criteria for all of the modes in a given FLC. Finding separate parameter 

values within each mode could also be accomplished, but could lead to a weaker stability proof. At this time, some of 

these techniques have been explored, but have yielded inconclusive results. Being able to find these parameters would 

be powerful, as they could then be used to conclusively prove stability for the FLC. 
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